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Graphene, a two-dimensional (2D)
carbon crystal, has elicited wide-
spread scientific interest.1-5 The

physical properties of graphene may be
significantly influenced by the presence of
corrugations.6-15 Periodic ripples represent
an especially desirable means to tailor gra-
phene's properties owing to their con-
trollability.15-18 The formation of all known
periodic ripples, whose wavelengths range
from 2 nm to 5 μm, is highly dependent on
the use of specific substrates.16-19 It is un-
known whether graphene can endure an
extreme degree of buckling on the angstrom
scale and howgraphene reorganizes its struc-
ture in response to conditions that promote
such buckling in the absence of specific sub-
strates. Experimental and theoretical studies
of these problems would provide insight into
the general properties of 2D atomic crystals.
The direct, unambiguous observation of

an angstrom-scale buckling structure in
graphene is challenging, because the in-
plane compression of the graphene lattice
and the out-of-plane displacement of car-
bon atoms may cause the atomic details to
be hidden behind the information limit of
conventional electron microscopic instru-
ments. Recent advances in aberration-
corrected transmission electronmicroscopy
(TEM) have improved its resolution limit to
the sub-angstrom level.22 We employed a
monochromated, aberration-corrected TEM
with a field-emission gun, Libra 200MC,
operating at 80 kV, to conduct this study.
The electron monochromator and the ob-
jective lens spherical aberration corrector
modified the envelope function and the
contrast transfer function relative to those of
conventional field-emission TEM, resulting in
a narrower depth of field at the focal plane of
image formation and directly interpretable
atomic images.22 In a typical bright-field TEM
image of a flat graphene area, the Fourier

spectrumof the imagedemonstrated that the
in-plane information limit of this microscope
waswell adjusted down to 0.58 Å in this study
(Supporting Information, Figure S1).

RESULTS AND DISCUSSION

The graphene was prepared by liquid-
phase exfoliation of graphite in organic
solvent, N-methyl-pyrrolidone (NMP).20 The
graphene dispersion was deposited onto a
holey carbon grid and vacuum dried before
loading into the electron microscope speci-
men chamber (see Methods). Only the gra-
phene sheets suspended in the empty holes
of the carbon grid were subjected to TEM
analysis. A previous study found that the
graphene sheets prepared in NMP by this
method are free of oxidation and defects,
that about 70% of them have no more
than three layers and that about 28% are
monolayers.20 Our results were consistent
with these findings.
In one layer of a free-standing graphene

bilayer, we observed a one-dimensional
(1D) periodic buckling structure with a
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ABSTRACT The distinctive properties of graphene sheets may be significantly influenced by the

presence of corrugation structures. Our understanding of these graphene structures has been limited

to the mesoscopic scale. Here we characterize angstrom-scale periodic buckling structures in free-

standing graphene bilayers produced by liquid-phase processing in the absence of specific substrates.

Monochromated, aberration-corrected transmission electron microscopy with sub-angstrom resolu-

tion revealed that the unit structures in the major buckling direction consist of only two and three

unit cells of graphene's honeycomb lattice, resulting in buckling wavelengths of 3.6( 0.5 and 6.4(

0.8 Å, respectively. The buckling shows a strong preference of chiral direction and spontaneously

chooses the orientation of the lowest deformation energy, governed by simple geometry rules

agreeing with Euler buckling theory. Unexpectedly, the overall buckled structures demonstrate

geometric complexity with cascaded features. First-principles calculations suggest that significant

anisotropic changes in the electronic structure of graphene are induced by the buckling.

KEYWORDS: graphene • aberration-corrected transmission electron microscopy •

Euler buckling instability • electronic structure • density functional theory
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wavelength of 6.4 ( 0.8 Å that is approximately com-
posed of three consecutive unit cells of the hexagonal
lattice, as shown in Figure 1. A sub-angstrom resolution
TEM image (Figure 1b) shows that the periodic behav-
ior of the buckling is strongly suppressed in the
dimension orthogonal to the buckling orientation.
The minimum unit of the buckling manifold may be
approximately modeled by a 3� 3 array of graphene's
unit cells, whose three-dimensional (3D) structure lacks
symmetry (Figure 1e). Only mesoscopic, randomly
distributed ripples and no angstrom-scale buckling
behaviors were observed in the other layer of the
graphene bilayer.
Another buckling structure with a wavelength of 3.6

( 0.5 Å was found in a folded graphene monolayer in
the vicinity of the folding edge (Figure 2). The unit
manifold in the major buckling direction comprises
only two hexagonal unit cells (Figure 3a and b). This
represents an extreme case for a buckled graphene
layer, because a buckling wavelength comprising just
one unit cell would generate at least 10 times higher
deformation energy than that generated by the cur-
rently observed atomic conformation 24,25 and thus is

energetically prohibited. Figure 3a clearly shows that
the seemingly 1D buckling texture is actually deco-
rated in detail by a highly ordered 2D array of unit
bucklingmanifolds, each ofwhich is composed of a 2�
3 array of unit cells (Figure 3b). The 3D structure of the
unit buckling manifold (Figure 3d) demonstrates two-
fold centrosymmetry (P2). Because the buckling in the
x-direction markedly increases the bending rigidity in
the y-direction,24,25 a 2� 3 array of unit cells might be
the smallest unit configuration for spontaneous peri-
odic buckling in graphene. The TEM images of the
buckling structures (Figures 1-3) are not consistent
with moir�e fringe patterns of graphene bilayers
(Supporting Information, note S1 and Figure S2).
Crystallographic analyses of the angstrom-scale

buckling structures suggest common rules for the
selection of buckling orientation and wavelength that
are intrinsic to the geometry of the graphene lattice. In
the 6.4 Å buckling structure, the buckling direction
parallels the line intersecting the two most distant
carbon atoms with P2 symmetry in three consecutive
hexagonal cells, as illustrated in Figure 1c. A similar rule
governs the 3.6 Å buckling structure, where the two

Figure 1. The 6.4 Å periodic buckling structure in a free-standing graphene bilayer. (a) TEM image of the buckling structure in
one layer of a graphene bilayer. Inset, the Fourier spectrumof the image. The area bounded by the dashed box lacks buckling
amplitude and coincideswith amesoscopic ripple. (b) Sub-angstrom resolution TEM reveals details of the reorganized carbon
atoms and graphene lattices in the buckled region. The unit buckling manifold is marked by red hexagons. (c) The intrinsic
geometric rule in theunit bucklingmanifold (upper panel) and the calculatedangular distributionof nominal critical strain (εc)
at a distanceof three unit cells (lowerpanel, drawn in polar coordinate system) that guides thebucklingorientation andwave-
length selection. Thegreen dashed line parallels the bucklingdirection. The red dashed line is orthogonal to the greendashed
line. Only 2π/3 angular range is shown for the angular distribution of εc due to its 6-fold symmetry. (d) The merged Fourier
spectrum of the 6.4 Å buckling structure. The image quality (IQ) value,29 from 1 to 4, is shown as the spot size from large to
small. The red spots indicate the major buckling wavelength at 6.4 Å. The yellow spots indicate the major diffractions arising
from the original graphene lattices. The blue spots indicate the reflections from the other nonbuckled layer of the graphene
bilayer, which has about a π/6 rotation relative to the buckled layer. (e) The 3D reconstruction of the topographic view of the
periodic buckling structure. The DFT-calculated 3D atomic configuration of the buckling structure with the lowest deforma-
tion energy (0.24 eV/atom) at the observed strain (0.09 in the x-direction), shown as a blue ball-stick model, was fitted into
the 3Dmap. The buckling amplitude in the x-directionwas determined to be∼1.2 Å; no obvious amplitude is observed in the
y-direction. (f) The 3Dperspective viewof the buckling structure reconstructed froma TEM image demonstrates that the 6.4 Å
buckling structure is nested within the mesoscopic ripples. In (b-f), the green arrows indicate the buckling orientation
(x-direction), and the red arrows indicate the orthogonal y-direction.
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most distant carbon atoms with P2 symmetry in two
neighboring hexagonal cells define themajor buckling
orientation (Figure 3b). These geometry rules directly
link the selection of buckling orientation to the
wavelength. Furthermore, the folding direction in the
3.6 Å buckling structure is precisely orthogonal to the
major buckling orientation (Figures 2 and 3b). The 3.6 Å
buckling structure extends to the folding edge that
defines the boundary condition of the overall buckling
manifold; this observation suggests that the buckling
and folding behaviors are highly coupled under the
same geometry rules.
According to the classic theory of the Euler buckling

instability, the critical strain (εc) of compression gives
rise to the onset of buckling.23,24 Below εc, there is only
in-plane deformation for the graphene lattice. To
understand the energetic basis of the observed geo-
metry rules, we calculated εc at a distance of two or
three unit cells as a function of the chiral direction (see
Supporting Information, note S2 for details). The re-
sults, shown in lower panels in Figures 1c and 3b, reveal
that the buckling orientations in the 6.4 and 3.6 Å
buckling structures correspond to the smallest εc in its
angular distribution at the distance of three and two
unit cells, respectively. Thus, the buckling spontaneously
chooses the direction of the lowest buckling energy
matching its wavelength. To ascertain this result, we
performed first-principles calculations of the buckling
structures using the density functional theory (DFT)
(see Methods). The ab initio graphene structures of the

lowest deformation energy under compression buckle
exactly along the experimentally observed directions;
the entire atomic configurations closely match the 3D
buckling structures reconstructed from the Z contrast
of the TEM micrographs (Figures 1e and 3d). The
consistency between experimental observations, ab
initio calculations and Euler buckling theory, implies
that the geometry rules are intrinsic properties of gra-
phene's buckling at this fine level and are independent
of specific interactions between graphene and other
materials (like solvents or TEM grids). This contrasts
with the mesoscopic periodic ripples,16-19 where no
similar intrinsic geometry rules were observed. Rather,
their behaviors are highly dependent on the specific
interaction between graphene and substrate and are
governed by the mesoscopic elasticity of graphene
sheets,16,24-27 where the geometric details of the
graphene lattice work in a mean-field manner.
More intriguingly, the overall buckling manifolds

demonstrate geometric complexity with cascaded
features. The 6.4 Å buckling structure was seen to be
nested within randomly distributed ripples with sizes
between 5 to 20 nm (Figure 1a and f) that are strongly
reminiscent of the irregular ripples observed in sus-
pended and supported graphene.6-8 Similarly, the
3.6 Å buckling structure was nested within another
1D periodic ripple with a wavelength of 2-3 nm and
with the same buckling direction (Figures 2 and 3e).
However, the 1D nanoscale periodic ripple structure
has relatively weak periodicity (with the wavelength
varying slightly at different places), resembling the
trench-induced mesoscopic ripples in graphene.16

Strong evidence for the nesting of the 3.6 Å buckling
structure into nanoscale periodic ripples is that the
original diffraction peaks of the graphene lattice in the
Fourier spectrum are broadened into lines strictly
along the buckling direction (Figures 2 and 3c); this
indicates that the angstrom-scale structures are em-
bedded within a one-dimensionally curved 3D mani-
fold. Although cascaded buckling has been observed
in deformed plastic sheets,28 it is unexpected in 2D
crystalline sheets like graphene. Taken together, our
findings suggest that the angstrom-scale buckling and
the mesoscopic rippling are manifestations of distinct
mechanical properties of graphene that may coexist in
a linearly combined fashion.
To understand the potential changes in the physical

properties of graphene arising from the angstrom-
scale periodic buckling, we used DFT to calculate the
electronic structures of the buckled graphene mono-
layers (see Supporting Information and Methods). The
low-energy charge carriers in pristine graphene are
well described by amassless Dirac equation and have a
linear energy dispersion isotropic near the Dirac points
(K) at the corners of the Brillouin zone (Figure 4a).2 A
previous theoretical study clarified that an anisotropy
in energy dispersion near the Dirac points is realizable

Figure 2. Aberration-corrected high-resolution TEM image
of 3.6 Å periodic buckling in a folded graphene monolayer.
Four image areas, boxed by yellow lines and numbered,
are associated with the correspondingly numbered Fourier
spectra in the insets. Comparison of Fourier spectra 1-3
suggests that they share a commonmajor structure, though
they have slight changes in minor features indicated by the
diffraction spots beyond1.0 Å. Themajor buckling direction
orients strictly perpendicular to the folding line. Box 4 shows
the background planar graphene sheet, providing an in situ
control for crystallographic analysis.
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in graphene under externally applied periodic poten-
tials, owing to the chiral nature of charge carriers.5 Our
ab initio results suggest that the chirality may also give
rise to a significant anisotropy in the energy dispersion
of charge carriers in the angstrom-scale buckled gra-
phene monolayers in the absence of external periodic
potentials (Figure 4b-f). The Dirac cone in pristine
graphene is circular and centered at the Dirac point
(Figure 4a and d). By contrast, in the buckled graphene,
the Dirac cone is significantly broadened and becomes
oval; its horizontal cross-section is no longer centered
at the Dirac point (Figure 4b-f). Such strong symmetry
breakage implies a highly anisotropic propagation of
charge carriers through graphene with the angstrom-
scale buckling structures.5 Other changes in gra-
phene's properties induced by the angstrom-scale

buckling are thus expected and deserving of sys-
tematic study.
The formation of the angstrom-scale buckling struc-

tures is expected to arise from the interlayer interac-
tions in a bilayer or a folded monolayer with the
assistance of liquid-phase processing (see Supporting
Information, notes S3-S5 for details). The potential
utilization of these fine buckling structures might
ultimately allow miniaturization of strain-engineered
graphene devices to several angstroms.13-15 The ani-
sotropic behaviors of massless Dirac fermions in the
angstrom-scale buckling structures may endow gra-
phene electronic circuits and devices with novel func-
tions and utilities.5 The substrate-free production of the
periodic buckling structures also allows great flexibility in
adapting them for diverse potential applications.

METHODS
Sample Preparation. Graphite flakes with a size of 1.8-5 mm

(NGS Naturgraphit GmbH, Leinburg, Germany) were incubated
in 1 mL N-methyl-pyrrolidinone (NMP, HPLC level, > 99%,

Sigma-Adlrich) in a 1.5 ml glass vial and sonicated for 3 h in
an ultrasonication bath (Input 160 W, output 70 W; Branson
1510, CT). The sonicated solution was then centrifuged at 500
rpm for 90 min. The upper suspension was decanted off the vial

Figure 3. The 3.6 Å periodic buckling structure in a folded graphenemonolayer. (a) Sub-angstrom resolution TEM imaging of
the buckling structure in detail. The unit manifold is marked by red hexagons. Arrows a and b dictate the lattice vectors of the
periodic buckling structure, where b-a is parallel to the y-direction. (b) The intrinsic geometric rule in the unit buckling
manifold (upper panel) and the calculated angular distribution of the nominal critical strain (εc) at a distance of two unit cells
(lower panel, drawn in polar coordinate system) that guides the buckling orientation and wavelength selection. The green
dashed line parallels the buckling direction (x-direction). The red dashed line parallels the folding line (y-direction). Only 2π/3
angular range is shown for the angular distribution of εc due to its 6-fold symmetry. (c) The merged Fourier spectrum of the
3.6 Å buckling structure. The IQ, from 1 to 4, is shown as the spot size. The red spots indicate themajor buckling periodicity at
3.6 Å. The blue spots indicate the 2D lattice of the unit bucklingmanifold, corresponding to the lattice vectors a and b shown
in panel (a). The yellow spots indicate themajor diffractions arising from the original graphene lattice. (d) The 3D reconstruc-
tion of the topographic view of the buckling structure. The DFT-calculated 3D atomic configuration of the buckling structure
with the lowest deformation energy (0.77 eV/atom) at the observed strain (0.15 in the x-direction and 0.04 in the y-direction),
shown as a blue ball-stick model, was fitted into the 3D map. The buckling amplitude is greater in the x-direction (∼0.9 Å)
than in the y-direction (∼0.3 Å). (e) The 3Dperspective viewof the buckling structure shows that the 3.6 Åbuckling structure is
nested within another set of 1D ripples of 2-3 nm wavelength with the same propagation direction. The white dashed line
highlights the nanoscale ripples. There is more contrast and a slightly larger wavelength of the 3.6 Å buckling structure at the
ripple top, as schematically modeled in the inset. In all panels, the green arrows indicate the major buckling orientation, and
the red arrows indicate the folding-line direction.
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and was transferred to another clean vial for storage before use.
The precipitated graphite flakes may be used again by exfolia-
tion in another volume of the solvent. A 3 μL droplet of the
graphene dispersion was applied to a holey carbon grid (C-Flat,
400 mesh size, 1.2/1.3R, Protochips, NC) and blotted by filter
paper from the edge and backside of the grid. (A second droplet
of the graphene dispersion may be applied to the same grid,
which enhances the chance of observing the buckling struc-
tures.) The grid was then vacuum dried for 30-60 min before
loading into the electron microscope specimen chamber.

TEM Analysis. The monochromated, aberration-corrected
TEM (Libra 200MC, Carl Zeiss NTS, MA) equipped with a field-
emission gun (80-200 kV) and an in-column omega energy
filter was first aligned and adjustedwith respect to the objective
lens aberration corrector at 80 kV, with themonochromator and
energy filter off, using an amorphous carbon film area, through
the CETCOR software interface (CEOS GmbH, Heidelberg,
Germany). After the objective lens spherical aberration was cor-
rected up to the third order, the monochromator was switched
in (4 μm slit). TEM imaging and analysis then were performed at
near-Gaussian focus at room temperature and recorded by
a 4000�4000 CCD camera (Gatan, Ultrascan4000, USA) at a
nominal magnification of 1 000 000�. All image data reported
in this paper were based on the same aberration correction
parameters. Because of the integration of Z-axis density, trans-
mission electron mirographs do not directly measure the
sample height. Nonetheless, the height of rippling in 2D
materials can still be estimated by either the Z contrast change
of the atom volume or the geometric constraint of the atomic
crystal order. In this work, we employed the latter approach,
taking advantage of the rich information in atomic positions

in the x-y plane and verified the results by DFT. Using the
crystallographically analyzed geometric configuration of the
unit buckling structure as shown in Figures 1c and 3b and
assuming the average carbon-carbon bond length to be
1.42 Å, one can readily estimate the rippling height. The es-
timation gave 0.9 ( 0.3 Å for the 6.4 Å buckling structure, in
agreement with the DFT result 1.2 Å, and 1.1( 0.3 and 0.5( 0.3
Å in the x- and y-directions, respectively, for the 3.6 Å buckling
structure, agreeing with the DFT results of 0.9 (x) and 0.3 Å (y).

Theoretical Analysis and First-Principles Calculations. To calculate
the critical strain εc as a function of chiral direction, we used a
quantitative relationship (eq 1 in Supporting Information) that
was yielded by a molecular mechanics simulation of graphene
elasticity without imposing the approximation of continuum
mechanics.24 The calculation details are provided in Supporting
Information, note S2 and Figure S3. The first-principles calcula-
tions were performed with the software package Spanish
Initiative for Electronic Simulations with Thousands of Atoms
(SIESTA) that implements the DFT.30 The atomic structures,
deformation energy, and band structures were calculated using
localized atomic orbitals with an energy cutoff of 70 Ry (∼952
eV). To calculate the atomic structures of the angstrom-scale
buckling, the supercells containing 9 and 6 graphene unit cells
(Figures 1c and 3b) were used for the 6.4 and 3.6 Å buckling
structures, respectively. The structures were relaxed under
given strains and periodic boundary conditions. The energy
optimization was terminated when the magnitude of the force
on each atom was less than 0.04 eV Å-1. For the calculation of
the 3.6 Å buckling structure, an extra geometric constraint
exerted by the folding edge was taken into account; that is, in
the supercell, 7 carbon atoms located around a line parallel

Figure 4. Anisotropic changes in the electronic structure of graphene induced by angstrom-scale buckling. (a) The isotropic
energy dispersion near one of theDirac points of charge carriers in pristine graphene. (b and c) The anisotropic energy disper-
sion near the Dirac points of charge carriers in graphenewith the 6.4 and 3.6 Å buckling structures, respectively. The 3D plots
in (a-c) are shownon the same scale. (d) Comparisonof the energydispersion at the same contour level (E=0.05 eV as dashed
lines, and E =-0.05 eV as solid lines) of pristine and buckled graphene, showing significant anisotropic changes induced by
the angstrom-scale buckling. The Dirac points for the different structures are shifted and aligned to the same position in the k
plane for comparison, as indicated by a black asterisk. (e and f) The contour plots of the energy dispersion around the Dirac
points of charge carriers in graphene with the 6.4 and 3.6 Å buckling structures, respectively. The contours above the Dirac
points are shown as dashed lines and the contours below the Dirac points by solid lines. The position of Dirac point at the
center of each contour plot is marked by asterisk. The green arrows in (e and f) indicate the major buckling directions and
correspond to the green arrows shown in Figures 1 and 3, respectively.

A
RTIC

LE



MAO ET AL . VOL. 5 ’ NO. 2 ’ 1395–1400 ’ 2011 1400

www.acsnano.org

to the folding edge were limited in the extent of their out-
of-plane displacement to e0.3 Å. No extra geometric constraint
was used for the calculation of the 6.4 Å buckling structure. In all
calculations, the Perdew-Burke-Ernzerhof exchange-correla-
tion functional and a k-point mesh cutoff of 20 Å were used. As
the ab initio atomic models of the buckling structures closely
match the 3D reconstructions of thebuckling structures generated
by the Z contrast images of aberration-corrected TEM, the 3D
coordinates of the ab initio atomic structures were used to extract
the amplitudes of the buckling structures and were used as input
parameters for the ab initio calculations of their corresponding
energy dispersion. Although the ab initio calculations produced
detailed atomic configurations that can directly explain the TEM
observations, they alone cannot account for the selection of the
angstrom-scale buckling wavelength. Instead, a semi-quantitative
analysis is described in Supporting Information, note S4, that
accounts for the selection of angstrom-scale wavelength, by
combining results from the ab initio calculations and the dynamic
theory of Euler buckling instability.
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